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Nonlinear ensemble state estimation offers a paradigm-shifting improvement in our ability to observe,
predict, and control the state of spiking neuronal systems. We use an ensemble Kalman filter to predict hidden
states and future trajectories in the Hodgkin-Huxley equations, reconstruct ion dynamics, control neuronal
activity including a strategy for dynamic conductance clamping, and show the feasibility of controlling patho-
logical cellular activity such as seizures.
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In 1952, Hodgkin and Huxley �1� created a set of equa-
tions which modeled the dynamics of ion current flow across
the neuronal membrane, which formed the foundation for our
understanding of the excitable dynamics of nonlinear action
potential wave propagation in neurons �2�. Hodgkin and
Huxley �HH� based their formulation on experiments that
used voltage clamp, a proportional feedback system that de-
livered current to the interior of a neuron to maintain the
transmembrane potential at a given value �3�. The transient
dynamics that resulted from such step changes in membrane
potential are reflected in the HH equations. More recently,
dynamic clamp techniques have introduced the manipulation
of a conductance by adjusting the amount of current injected
into a neuron while measuring membrane potential �4�.

However, despite the existence of this multivariable ionic
model for neuronal spiking, neuronal activity is almost al-
ways measured through observing just a single variable such
as voltage �or calcium, using optical techniques�. Such mea-
surements are always uncertain, due to a combination of
noise in neurons and amplifiers, as well as uncertainties in
recording equipment such as electrode access resistance and
capacitance. The introduction of ensemble �5� or unscented
�6,7� Kalman filtering �UKF� has enabled the prospect of
efficient state estimation of noisy systems with the degree of
nonlinearity present in neurons �8�. UKF has recently been
extended to tracking spatiotemporal neuronal networks �9�.
These works demonstrated such control theory frameworks
only on reduced dynamical models of neurons �8,9�. To our
knowledge, no one has applied such model-based control
theory to reconstruct the full ionic dynamics of neurons.

We here demonstrate that a nonlinear ensemble Kalman
filter framework can assimilate neuronal data from single
voltage measurements alone and reconstruct the full HH
ionic dynamics. We further demonstrate that such a strategy
can reconstruct additional extracellular ionic dynamics,
which are critical in defining the stability and pattern forma-
tion of neuronal networks �10�. We show the ability to mea-
sure nonvoltage variables from which reconstructions of the
unobserved voltage dependent variables and parameters can
be performed, and also introduce a strategy for dynamic con-
ductance clamping. Lastly, we demonstrate the use of such a

framework to control pathological seizure dynamics.
The transmembrane potential V of a single neuron, nor-

malized to zero in the resting state, is modeled with the HH
equations �1�:

V = e +
1

Cm
�

0

T

�IK + INa + Il + Istim�dt ,

IK = − gKn4�V − VK�, INa = − gNam
3h�V − VNa� ,

Il = − gl�V − Vl�, dq/dt = �q�1 − q� − �qq, q = m,n,h , �1�

where e is the V measurement noise, n4 and m3h represent
gating variables for potassium, IK, and sodium, INa, currents,
and Il is the leak current. The rate equations for the gating
variables are �n= �0.1−0.01V� / �exp�1−0.1V�−1�, �n
=0.125 exp�−V /80�, �m= �2.5−0.1V� / �exp�2.5−0.1V�−1�,
�m=4 exp�−V /18�, �h=0.07 exp�−V /20�, and �h
=1 / �exp�3−0.1V�+1�.

Recently �10�, we have shown that extracellular potas-
sium dynamics, �K�o, can be represented in a model based on
IK, activity of the pump exchanging K+ and Na+, Ipump, dif-
fusion of potassium to the microenvironment, Idiff, and glial
buffering, Iglia �Fig. 1�a��,

�K�o = eK + �
0

T

�0.165IK − 2�Ipump − Idiff − Iglia�dt , �2�

where eK is the �K�o measurement noise, Ipump
= Imax / �1+exp�8− �K�o��, Idiff=���K�o−ko,��, Iglia
=Gglia / �1+exp��18− �K�o� /2.5��. The potassium and
leak reversal potentials are updated based on the instanta-
neous �K�o using the Nernst equations,

VK = 70 + 26.64 ln��K�o/�K�i� ,

Vl = 70 + 26.64 ln� �K�o + 0.085�Na�o + 0.1�Cl�i

�K�i + 0.085�Na�i + 0.1�Cl�o
	 . �3�

We consider a spherical cell with a radius of 13 �m and
parameters given in �22�. We set K+ in the nearby infinite
reservoir �bath solution in a slice preparation, or vasculature
in the intact brain� ko,�=4.0 mM, and intra- to extracellular
volume ratio �=7 �11�.

The UKF approximates the a posteriori probability den-*ghanim@psu.edu
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sity of the estimated state by a Gaussian distribution, and
propagates the estimated system state mean and covariance
by specifying an ensemble of points that characterize the
state variability—sigma points ���. Given a function F de-
scribing the dynamics of the system �Eqs. �1�–�3��, and ob-
servation function W contaminated by uncertainty character-
ized by the covariance matrix R, for a D-dimensional
estimated state x̄ the UKF generates the 2D sigma points
X1 , . . . ,X2D which are the 2D columns of the matrix
x̄�
DP, where P is the estimated covariance matrix of the
state x. Increasing the number of sigma points increases ac-
curacy but reduces efficiency �6�. Applying one step of the

dynamics F to the sigma points, X̃i=F�Xi�, and denoting the
observations of the new states by Ỹi=W�X̃i�, we define the
means x̃= �1 /2D��i=1

2D X̃i, ỹ= �1 /2D��i=1
2D Ỹi, where x̃ and ỹ are

the a priori state and measurement estimates, respectively.
Now define the a priori covariances P̃xx= �1 /2D��i=1

2D �X̃i

− x̃��X̃i− x̃�T, P̃xy = �1 /2D��i=1
2D �X̃i− x̃��Ỹi− ỹ�T, and P̃yy

= �1 /2D��i=1
2D �Ỹi− ỹ��Ỹi− ỹ�T of the ensemble members. The

Kalman filter estimates of the new state and uncertainty are
given by the a posteriori quantities x̂= x̃+K�y− ỹ� and P̂xx

= P̃xx−KP̃xy, where K= P̃xyP̃yy
−1 is the Kalman gain matrix and

y is the actual observation �see �7–9��. Thus x̂ and P̂xx are the
updated estimated state x and covariance P for the next step.
The a posteriori estimate of the observation ŷ is recovered
by ŷ=W�x̂�. Thus, by augmenting the observed state vari-
ables with unobserved state variables and system parameters,
UKF can estimate and track both unobserved variables and
system parameters. Although there are more sophisticated
methods to explicitly account for model inadequacy �12�, we
here minimize model inadequacy by carefully choosing the
process noise added to state x̃.

In contrast with recent work on reduced models �8,9�, we
seek to reconstruct the full HH ionic dynamics using noisy
voltage measurements. Conversely, we wish to employ �K�o
measurements to reconstruct voltage and other gating vari-
ables and parameters. We want to generate control signals
based on the measured and estimated variables while at the
same time optimizing the energy requirements.

As a first example we use the original HH model �Eq. �1��
to demonstrate that all variables and parameters can be re-
constructed from the measurements of a single variable �Fig.
1�. In Fig. 1�b� we show the voltage measurements while the
estimated gating variables m, h, and n are shown in Figs.
1�c�–1�e�. We also tracked the three current conductances
gNa, gK, and gl in Figs. 1�f�–1�h�, respectively.

To illustrate the power of this technique under significant
model inadequacy �12�, we set �m constant, and track it as a
parameter rather than a function of V �with trivial dynamics
as in �8�� in Figs. 1�i� and 1�j�. Although this model by itself
is incapable of spiking �black traces�, when the data from
Fig. 1�b� are assimilated, the UKF framework reconstructs
spiking sufficiently well to track the dynamics �dark gray
�blue� traces�. This �m tracked by UKF is within 20–30%
root mean square �time step dependent� of the full functional
form of �m, and is sufficiently close to enable the generation
of spike dynamics. A universal need in neuroscience is to be
able to track and control systems with incomplete knowledge
of the underlying equations �12�.

We next add a variable �K�o parameter to the HH equa-
tions. Thus our function F now consists of Eqs. �1� and �3�.
In Fig. 2 we show the measured membrane potential �top�
and the estimated �K�o �bottom�. The filter does a very good
job in tracking this additional parameter. All other gating
variables and parameters can be estimated and tracked along
with �K�o �not shown�.

We followed the strategy of �9� to estimate a control vec-
tor �Fig. 3�a��. In the left panel we show direct proportional
control, where control signal c is generated from the noisy
measurement y, which is generated by adding noise e to
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FIG. 1. �Color online� �a� A schematic of the model dynamics:
the cell releases K+ through IK, which is either pumped back into
the cell through K+-Na+ exchange pumps or buffered by the glia
from the extracellular region. K+ can also diffuse to the nearby
reservoir �capillaries in tissue or bath solution in vitro�. �b�–�h�
Tracking the dynamics of the HH neuron �true values from the
model, black, and uncontrolled estimates, dark gray �blue��. Fixed
reversals of −12 and 10.6 mV �relative to 0 mV resting potential�,
respectively, are used for K+ and leak currents ��K�o fixed�, and a
constant stimulus Istim=10 �A /cm2 is applied to the neuron for
50	 t	200 ms. �b�–�h� respectively, voltage V, Na+ channel acti-
vation m, Na+ channel inactivation h, K+ channel activation n, gNa,
gK, and gl. �i�,�j� Inaccurate model gives accurate estimates: same
as �b�,�c� except constant �m is used ��m=0.5 black, �m estimated
dark gray �blue��. Noise e=0.5, �=14.
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observation variable b following application of observation
function W. In the right panel we show Kalman observer
control, where the model observer system is used to generate
the control vector from the estimated observable ŷ. In both
schemes the control vector is applied to both the system and
observer. In Fig. 3�b� we demonstrate use of voltage mea-
surements �top� to control the dynamics of the cell. The ex-

tracted Na+ channel gating variable m is shown in the middle
panel. As is clear from the bottom panel, the energy required
for the control vector estimation through Kalman observer
control is smaller than that used in direct proportional con-
trol. In fact, the energy requirements for direct proportional
control relative to the energy requirements for Kalman ob-
server control increases exponentially with increased noise in
the measurements �inset right bottom�, although beyond a
certain limit the direct proportional controller becomes un-
stable �not shown�.

Since we can estimate the gating variables and parameters
along with �K�o, it is possible to construct control signals
based on the estimated gating variables. Such a control
framework offers a novel means to modulate neuronal dy-
namics through various conductances using dynamic clamp
�4�. In Fig. 4�a� we show a dynamic clamp simulation where
seizure-like activity is controlled through gK. In previous dy-
namic clamp methods, the current corresponding to a given
ion species, Ii, is calculated in isolation from the relation Ii
=gi�V−Vi�, where gi is the voltage-dependent conductance,
and Vi is the reversal potential for an ion species i �4�. In the
bottom panel we show �K�o estimated by the filter. Our state
estimation framework has an advantage over this previous
methodology in that the current to be injected into the cell to
modulate a conductance can be calculated from more com-
plete dynamical descriptions of conductance and gating pa-
rameters �from Eqs. �1�–�3��, combined with an optimal
strategy for handling model and measurement uncertainty,
which, heightened by computational constraints, are major
issues in applying dynamic clamp �13�.

In Fig. 4�b� we use V measurements to control seizurelike
events by applying the control signal to V �top�. Such control
strategy can be employed experimentally by controlling sei-
zures using an adaptive electric field �14�. Here we place a
frequency gate on the filter, tuning the filter such that it ap-
plies the control signal only when the frequency of measured
or estimated neuronal spiking goes above a certain value
�50 Hz�. The frequency gate �50 Hz� in the filter allows the
controller to modulate only the high-frequency spiking at-
tributed to seizurelike behavior, while allowing the neurons
to perform their more normal �low-frequency� functions.
This not only minimizes the energy requirements by shutting
the controller off when not needed, but can also minimize the
long-term damage to brain tissue due to continuous electrical
stimulation.

There is considerable evidence relating increased �K�o to
the abnormal patterns of activity during epilepsy and spread-
ing depression �15�. The relatively small extracellular space
causes a small IK to generate moderate changes in �K�o,
which enhances the membrane excitability significantly by
changing the reversal potentials for K+ channels. Recent
work has explored the bifurcation dynamics of K+ in single
cells and the influence of K+ on network stability �10�.

We therefore reconstruct neuronal dynamics including V
based on �K�o measurements. In the top panel of Fig. 4�c� we
show �K�o measurements, and apply K+ control at t
=250 ms. Driving �K�o to lower levels causes the seizure-
like burst firing in V to go to silence �bottom�. Controlling
seizures with �K�o has two major advantages: �1� the time
scale for �K�o is slower than the fast dynamics of V and
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FIG. 2. �Color online� Tracking a variable parameter �K�o

given as �K�o=3.5+6�exp�−�t−100�2 /2c2�+exp�−�t−350�2 /2c2�
+exp�−�t−600�2 /2c2��, c=65. Measured V �top� and estimated �K�o

�bottom� in dark gray �blue�, true values in black. Noise e=1.0,
�=16.
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FIG. 3. �Color online� �a� Schematic of Kalman filter observer.
System function F acts upon state variable x, and observation func-
tion W produces output vector b. Output observable y is generated
by adding measurement noise e to b. In the left panel the control
signal is constructed directly from actual noisy data by multiplying
it with gain G, while in right panel the filter uses the estimated state
from the observer. �b� Controlling the dynamics of HH neuron �con-
trolled estimates, light gray �orange�; uncontrolled estimates, dark
gray �blue�; true values, black� using direct proportional �left� and
Kalman observer control �right�. Panels V, m, and energy used by
the controller �sum of squares of control vector�. Control vector c is
turned on at t=100 ms and injected only into V. Inset shows ratio of
energy required in direct proportional and Kalman observer control,
versus measurement noise �circles�, fitted by exp�e1.7�. Gain G=
−0.2, noise e=1.0, �=14.
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gating variables, and hence can be more easily implemented
in real time, and �2� the �K�o controller allows us to control
the neuronal network rather than a single cell. It has been
shown, using ion-selective microelectrodes to measure K+

activity changes in extracellular space that electrical current
could be used to decrease or increase �K�o �16�. A recent
theoretical study �17� predicts a functional block along axons
due to K+ accumulation in the extracellular �submyelinated�
space during deep brain stimulation. Recent optical tech-
niques offer the prospect of increasing the speed and de-
creasing the scale of �K�o measurements �18�.

In conclusion, we have laid the foundation for the frame-
work of model-based data assimilation and control for spik-
ing neuronal systems based on the foundational HH ionic
model. This framework has a wide range of potential appli-
cations to various systems in biology, where one can use a

single measured variable to estimate the variables and pa-
rameters that are experimentally inaccessible, and allows us
to predict the system trajectory. Examples of similar nonlin-
earities include the spiking dynamics of heart cells, or the
insulin-secreting cells in the pancreas. The prospect of em-
ploying our framework in dynamic conductance clamp offers
possibilities of addressing the well-known limitations of this
technique �4,13�: the need to reconstruct spatial dynamics
from point measurements, the need to account for signal
transduction analyte concentration changes �such as cal-
cium�, and of course the ubiquitous need to account for er-
rors in measurements, modeling, and discrete computation.
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FIG. 4. �Color online� Single cell seizures controlled through gK �a�, V �b�, and �K�o �c�. In �a� top panel shows V measurements with
�light gray �orange�� and without �dark gray �blue�� control. At t=500 ms, gK is doubled using dynamic conductance clamp, which
suppresses the seizure. Bottom panel shows estimated �K�o. In �b� simulation from �a� but control signal is applied to V when the spiking
frequency is above 50 Hz. �K�o is lower after seizures are blocked �bottom panel�. In �c� dynamics are generated from, and control signals
are applied to, �K�o measurements. The control vector is injected only into �K�o �top panel�. After injection of control signal V stays close
to the resting value �bottom panel�. Stimulus Istim=a�exp��500− t� /2c2�+exp��1750− t� /2c2�� is applied to the cell, where a=50 �A /cm2,
c=200. Gain G=−0.06 �a�,�b�, −0.01 �c�; e=0.5 �a�,�b�, ek=0.5 �c�. �=16.
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